BEST POST-TRANSFORM SELECTION IN A RATE-DISTORTION SENSE

X. Delaunay¹, E. Christophe², C. Thiebaut², V. Charvillat³

xavier.delaunay@novertis.fr

¹ NOVELTIS/TéSA/CNES ² CNES ³ IRIT/ENSEEIHT

PROBLEM STATEMENT

The Post-transform Compression Scheme:

Goal: Exploit residual intra-band dependencies between wavelet coefficients.

Approach: Further transformation of blocks of wavelet coefficients using bases selected in a dictionary known both by the encoder and the decoder.

Compression scheme:

Post-transform of one block:

Example of a post-transform:

Question: What is the best post-transform basis on each block?

RATE-DISTORTION CRITERION

Goal for the compression:

Constrained problem:

 $\min_{S \in \mathcal{S}} D(S)$ Minimize the distortion D(S) given the maximum $R(S) \leq R_T$ target bit-rate R_T .

where S is the set of the post-transform bases selected on each block.

Unconstrained problem:

 $\min_{S \in \mathcal{S}} \ D(S) + \lambda \ R(S)$ Minimize the Lagrangian rate-distortion criterion:

Problems:

tization step q.

- 1. How to find the best set of the post-transform bases S^* ?
- 2. What is the best Lagrangian multiplier λ^* ?
- 3. The rate R and the distortion D depend *both* on the set of the post-transform bases S and on the quantization step q!

BEST SET OF POST-TRANSFORMS

Thanks to the additive rate-distortion criterion, the best set of post-transform bases can be found by minimizing $(d_i^b + \lambda \ r_i^b)$ for each post-transform basis $\mathcal{B}_b \in \mathcal{D}$ on each block of wavelet coefficient f_i .

Example for one wavelet block f_i and $d_i^{b*} + \lambda r_i^{b*}$ a dictionary $\mathcal D$ of several post-transform bases \mathcal{B}_h . The blue crosses are the (r_i^b, d_i^b) computed for the posttransformed blocks $f_{i,a}^b$ with a fixed quan-

Algorithm 1: Optimal rate-distortion point

Input: The Lagrangian multiplier λ and the rate-distortion points $\{(r_i^b, d_i^b)\}_{b=i}$ of each block f_i transformed in each basis b

Output: The optimal rate $R^*(\lambda)$ and distortion $D^*(\lambda)$

foreach $block f_i$ do

// Select the representation which minimizes the Lagrangian cost

 $b_i^*(\lambda) = \arg\min_{b \in [1, N_{\mathcal{B}}]} \left(d_i^b + \lambda \, r_i^b \right)$

end

 $\log_2 \lambda$

 $R^*(\lambda) = \sum_i r_i^{b*}(\lambda)$ and $D^*(\lambda) = \sum_i d_i^{b*}(\lambda)$ and $S^*(\lambda) = \{b_i^*(\lambda)\}_i$

BEST LAGRANGIAN MULTIPLIER

D (MSE)

160

120

80

Several optimal rate-distortion curves are obtained for one image by varying λ and the quantization step q.

We are looking for the lower hull of these rate-distortion curves i.e. a relation between λ and q.

q = 26

r = 21

Theory: (see paper) $\lambda = 0.115 \ q^2$ (black line)

Results on a set of six Earth observation images: $\lambda \approx 0.15 \ q^2$ (blue curves)

COMPRESSION RESULTS COMPARISONS

Compression results are compared best compression results PSNR* obtained by a nearly exhaustive search of the best parameters (λ, q) (red line) with a second set of Earth observation images.

The blue and black curves are mean compression results obtained with the theoretical and empirical formulas of λ .

Compression results are very close to the optimal with both formulas.

CONCLUSIONS

- The best post-transforms selection amounts to the search of an optimal Lagrangian multiplier λ .
- λ depends on the quantization step q.
- \bullet λ can be computed by a nearly exhaustive search.
- ullet Close to optimal compression results are obtained by computing the λ using a formula. This highly reduces the complexity.
- ullet Compression results obtained with the empirical formula of λ are very close to the optimal results.

Future works: Best post-transform selection with a bit-plane encoder.

Related papers:

- X. Delaunay, M. Chabert, V. Charvillat, G. Morin and R. Ruiloba, "Satellite image compression by directional decorrelation of wavelet coefficients," in ICASSP'08, April 2008, Las Vegas, NV.
- X. Delaunay et al., "Lossy compression by post-transforms in the wavelet domain," in OBPDC Workshop, June 2008, ESA ESTEC Noordwijk, The Netherlands.